导航:首页 > 作文常识 > 晶体的常识

晶体的常识

发布时间:2020-11-25 08:59:49

⑴ 晶体有关知识

晶体即是内部质点在三维空间呈周期性重复排列的固体.
晶体有三个特征:(1)晶体有整齐规则的几何外形.(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变.(3)晶体有各向异性的特点:固态物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点.晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列.非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序.如玻璃.外形为无规则形状的固体.
晶体组成
组成晶体的结构微粒(分子、原子、离子、金属)在空间有规则地排列在一定的点上,这些点群有一定的几何形状,叫做晶格.排有结构粒子的那些点叫做晶格的结点.金刚石、石墨、食盐的晶体模型,实际上是它们的晶格模型.晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体.固体可分为晶体、非晶体和准晶体三大类.具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式.固态物质是否为晶体,一般可由X射线衍射法予以鉴定.
晶体内部结构中的质点(原子、离子、分子)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体.组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角(晶面角)是一定的,称为晶面角不变原理.晶体按其内部结构可分为七大晶系和14种晶格类型.晶体都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群.按照内部质点间作用力性质不同,晶体可分为离子晶体、原子晶体、分子晶体、金属晶体等四大典型晶体,如食盐、金刚石、干冰和各种金属等.同一晶体也有单晶和多晶(或粉晶)的区别.在实际中还存在混合型晶体.
说到晶体,还得从结晶谈起.大家知道,所有物质都是由原子或分子构成的.众所周知,物质有三种聚集形态:气体、液体和固体.但是,你知道根据其内部构造特点,固体又可分为几类吗?研究表明,固体可分为晶体、非晶体和准晶体三大类.
几何形状
晶体通常呈现规则的几何形状,就像有人特意加工出来的一样.其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多.如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子.而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的.准晶体是最近发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体.究竟什么样的物质才能算作晶体呢?首先,除液晶外,晶体一般是固体形态.其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体.但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体.那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术.用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体.
晶体结构
为了描述晶体的结构,我们把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构.这种用来描述原子在晶体中排列的几何空间格架,称为晶格.由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞.许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英.大家最常见到的一般是多晶体.由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异.例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围.

⑵ 请教一些晶体学的知识

太简单了,我们学校就有这种程序,叫做高斯什么的,
具体我给你问问同事。

等着好消息!
=========================
Gaussian是一个功能强大的量子化学综合软件包。其可执行程序可在不同型号的大型计算机,超级计算机,工作站和个人计算机上运行,并相应有不同的版本。
高斯功能:
分子能量和结构
过渡态能量和结构
键和反应能量
分子轨道
多重矩
原子电荷和电势
振动频率
红外和拉曼光谱
核磁性质
极化率和超极化率
热力学性质
反应路径
计算可以对体系的基态或激发态执行。可以预测周期体系的能量,结构和分子轨道。因
此,Gaussian可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响,化学反应机理,势能曲面和激发能等等。

关于Gaussian 03 的介绍
是Gaussian系列电子结构程序的最新版本。它在化学、化工、生物化学、物理化学等化学相关领域方面的功能都进行了增强。
1.研究大分子的反应和光谱
Gaussian 03对ONIOM做了重大修改,能够处理更大的分子(例如,酶),可以研究有机体系的反应机制,表面和表面反应的团簇模型,有机物光化学过程,有机和有机金属化合物的取代影响和反应,以及均相催化作用等。
ONIOM的其它新功能还有:定制分子力学力场;高效的ONIOM频率计算;ONIOM对电、磁性质的计算。
2.通过自旋-自旋耦合常数确定构像
当没有X-射线结构可以利用时,研究新化合物的构像是相当困难的。NMR光谱的磁屏蔽数据提供了分子中各原子之间的连接信息。自旋-自旋耦合常数可用来帮助识别分子的特定构像,因为它们依赖于分子结构的扭转角。
除了以前版本提供的NMR屏蔽和化学位移以外,Gaussian 03还能预测自旋-自旋耦合常数。通过对不同构像计算这些常数,并对预测的和观测的光谱做比较,可以识别观测到的特定构像。另外,归属观测的峰值到特定的原子也比较容易。
3.研究周期性体系
Gaussian 03扩展了化学体系的研究范围,它可以用周期性边界条件的方法(PBC)模拟周期性体系,例如聚合物和晶体。PBC技术把体系作为重复的单元进行模拟,以确定化合物的结构和整体性质。例如,Gaussian 03可以预测聚合物的平衡结构和过渡结构。通过计算异构能量,反应能量等,它还可以研究聚合物的反应,包括分解,降解,燃烧等。Gaussian 03还可以模拟化合物的能带隙。
PBC的其它功能还有:(1) 二维PBC方法可以模拟表面化学,例如在表面和晶体上的反应。用同样的基组,Hartree-Fock或DFT理论方法还可以用表面模型或团簇模型研究相同的问题。Gaussian 03使得对研究的问题可以选择合适的近似方法,而不是使问题满足于模块的能力极限。(2) 三维PBC:预测晶体以及其它三维周期体系的结构和整体性质。
4.预测光谱
Gaussian 03可以计算各种光谱和光谱特性。包括:IR和Raman;预共振Raman;紫外-可见;NMR;振动圆形二色性(VCD);电子圆形二色性(ECD);旋光色散(ORD);谐性振-转耦合;非谐性振动及振-转耦合;g张量以及其它的超精细光谱张量。
5.模拟在反应和分子特性中溶剂的影响
在气相和在溶液之间,分子特性和化学反应经常变化很大。例如,低位构像在气相和在(不同溶剂的)溶液中,具有完全不同的能量,构像的平衡结构也不同,化学反应具有不同的路径。Gaussian 03提供极化连续介质模型(PCM),用于模拟溶液体系。这个方法把溶剂描述为极化的连续介质,并把溶质放入溶剂间的空穴中。
Gaussian 03的PCM功能包含了许多重大的改进,扩展了研究问题的范围:可以计算溶剂中的激发能,以及激发态的有关特性;NMR以及其它的磁性能;用能量的解析二级导数计算振动频率,IR和Raman光谱,以及其它特性;极化率和超极划率;执行性能上的改善。
G03W的界面和G98W相比,没有什么变化,G98W的用户不需要重新熟悉界面。

Gaussian 03新增加了以下内容:
新的量子化学方法
(1) ONIOM模块做了增强
对ONIOM(MO:MM)计算支持电子嵌入,可以在QM区域的计算中考虑MM区域的电特性。
通过算法的改善,ONIOM(MO:MM)对大分子(如蛋白质)的优化更快,结果更可靠。
ONIOM(MO:MM)能够计算解析频率,ONIOM(MO:MO)的频率计算更快。
提供对一般分子力场(MM)的支持,包括读入和修改参数。包含了独立的MM优化程序。
支持任何ONIOM模拟的外部程序。
(2) 修改和增强了溶剂模块
改善和增强了连续介质模型(PCM):
默认是IEFPCM模型,解析频率计算可以用于SCRF方法。此外改善了空穴生成技术。
模拟溶液中的很多特性。
可以对Klamt的COSMO-RS程序产生输入,通过统计力学方法,用于计算溶解能,配分系数,蒸汽压,以及其它整体性质。
(3) 周期性边界条件(PBC)
增加了PBC模块,用于研究周期体系,例如聚合物,表面,和晶体。PBC模块可以对一维、二维或三维重复性分子或波函求解具有边界条件的Schrodinger方程。周期体系可以用HF和DFT研究能量和梯度;
(4) 分子动力学方法
动力学计算可以定性地了解反应机制和定量地了解反应产物分布。计算包含两个主要近似:
Born-Oppenheimer分子动力学(BOMD), 对势能曲面的局域二次近似计算经典轨迹。计算用Hessian算法预测和校正走步,较以前的计算在步长上能够改善10倍以上。还可以使用解析二级导数,BOMD能够用于所有具有解析梯度的理论方法。
提供原子中心密度矩阵传播(ADMP)分子动力学方法,用于Hartree-Fock和DFT。吸取了Car和Parrinello的经验,ADMP传递电子自由度,而不是求解每个核结构的SCF方程。与Car-Parrinello不同之处在于,ADMP传递密度矩阵而不是MO。如果使用了原子中心基组,执行效率会更高。这一方法解决了Car-Parrinello存在的一些限制,例如,不再需要用D代替H以获得能量守恒,纯DFT和混合DFT均可使用。ADMP也可以在溶剂存在的情况下执行,ADMP可以用于ONIOM(MO:MM)计算。
(5) 激发态
激发态计算方面做了增强:
由于改善了在完全组态相互作用计算中求解CI矢量的算法,提高了CASSCF执行效率。对能量和梯度计算可以使用约14个轨道(频率计算仍是8个)。
限制活性空间(RAS)的SCF方法。RASSCF把分子轨道分成五个部分:最低的占据轨道(计算中作为非活性轨道考虑),计算中作为双占据的RAS1空间,包含对所研究问题非常重要分子轨道的RAS2空间,弱占据的RAS3空间,以及未占据轨道(计算中做冻结处理)。因此,CASSCF在RAS计算中分成三个部分,考虑的组态通过定义RAS1空间允许的最少电子数和RAS3空间允许的最多电子数,以及三个RAS空间电子总数来产生。
NBO轨道可用于定义CAS和RAS活性空间。对于对应成键/孤对电子的反键轨道可以提供相当好的初始猜测。
对称性匹配簇/组态相互作用(SAC-CI)方法,用于有机体系激发态的高精度计算,研究两个或更多电子激发的过程(例如电离谱的扰动),以及其它的问题。
CIS,TD-HF和TD-DFT的激发态计算中可以考虑溶剂影响。

新的分子特性
(1) 自旋-自旋耦合常数,用于辅助识别磁谱的构像。
(2) g张量以及其它的超精细光谱张量,包括核电四次常数,转动常数,四次离心畸变项,电子自旋转动项,核自旋转动项,偶极超精细项,以及Fermi接触项。所有的张量可以输出到Pickett的拟合与光谱分析程序。
(3) 谐性振-转耦合常数。分子的光谱特性依赖于分子振、转模式的耦合。可用于分析转动谱。
(4) 非谐性振动及振-转耦合。通过使用微扰理论,更高级的项可以包含到频率计算中,以产生更精确的结果。
(5) 预共振Raman光谱,可以产生基态结构,原子间连接,以及振动态的信息。
(6) 旋光性以及旋光色散,通过GIAO计算,用于识别手性体系的异构体。
(7) 电子圆二色性(ECD)。这一特性是光学活性分子在可见-紫外区域的差异吸收,用于归属绝对构型。预测的光谱还可用于解释已存在的ECD数据和归属峰位,
(8) 含频极化和超极化,用于研究材料的分子特性随入射光波长的变化。
(9) 用量度无关原子轨道(GIAO)方法计算磁化率,它类似于电极化率,用于研究分子的顺磁/反磁特性。
(10) 预测气相和在溶剂中的电、磁特性和光谱。
(11) ONIOM预测电、磁特性。
新增加的基本算法
(1) 更好的初始轨道猜测。Gaussian 03使用Harris泛函产生初始猜测。这个泛函是对DFT非迭代的近似,它产生的初始轨道比Gaussian 98要好,例如,对有机体系有所改善,对金属体系有明显改善。
(2) 新的SCF收敛算法,几乎可以解决以前所有的收敛问题。对于其它极少数的不收敛情况,Gaussian 03提供了Fermi展宽和阻尼方法。
(3) 纯DFT计算的密度拟合近似。这一近似在计算库仑相互作用时,把密度用一组原子中心函数展开,而不是计算全部的双电子积分。它用线性换算的算法,对中等体系的纯DFT计算可以极大地提高计算效率,而又不损失多少精度。Gaussian 03可以对AO基自动产生合适的拟合基,也可以选择内置的拟合基。
(4) 更快的自动FMM方法,用于适中的体系(纯DFT约100个原子,混合DFT约150个原子)。
(5) 对纯DFT使用更快的库仑能算法,节省库仑问题的CPU时间。
(6) O(N)更精确的交换能量项。在Hartree-Fock和DFT计算中,通过删除密度矩阵的零值项来屏蔽精确的交换贡献。这可以节省时间,而又不损失精度。
新增功能:
(1) 新的密度泛函:OPTX交换,PBE和B95相关,VSXC和HCTH纯泛函,B1及其变体B98,B97-1,B97-2,PBE1PBE混合泛函。
(2) 高精度能量方法:G3及其变体,W1方法。另外还包含W1BD,它用BD代替耦合簇,比CBS-QB3和G3更精确,当然计算也更加昂贵。
(3) 对重元素全电子基组计算的Douglas-Kroll-Hess标量相对论修正,用于当ECP基组不能满足精度的情况。
(4) 逼近基组极限的UGBS基组。

=========================
Gaussian 98介绍

Gaussian 98(以下简称G98)是一个功能强大的量子化学综合软件包。其可执行程序可在不同型号的大型计算机、超级计算机、工作站、和个人计算机上运行,并相应有不同的版本。在执行分子计算作业时,这些不同版本所使用的输入文件的核心部分的格式,包括作业控制所用的关键词、可选项代号都是一样的。其差别仅仅是输入文件Link0 部位中执行作业初始化的控制语句因计算机型号而异。因此,只要在一种型号的计算机上较熟练地掌握了该软件包的使用,改用其他计算机或操作系统上的软件版本是轻而易举的事。鉴于PC 机硬件技术的飞速发展和操作当不断改进,不仅使多数量子化学计算工作可以方便地在个人计算机上进行,而且其计算速度和计算容量与工作站的差距在不断缩小。Gaussian 98 for Windows(以下简称G98W)与G98 其它版本在同步升级,而且它可方便地与Windows 平台上的具分子构建和图像显示功能的ChemOffice、HyperChem 等软件结合使用,从而使得输入文件编辑和计算结果分析处理变得十分方便。目前,G98W 已成为世界上被使用最广的量子化学程序版本。对于初涉计算量子化学领域的学生和研究工作者,从G98W 起步无疑是最佳的选择。

Gaussian 98 基本功能

基本功能系指G98 计算功能与其前一版本G94 的相同部分。即:可执行各类不同精度和理论档次的MO 计算,包括Hartree-Fock 水平从头算(HF)、Post-HF 从头算(各级CI 和MP)、MC-SCF法、密度泛函理论(DFT),以及多种半经验量子化学方法,进行分子和化学反应性质的理论预测。

主要计算项目包括:

? 分子的能量与几何结构

? 化学反应过渡态的能量与几何结构

? 振动频率分析

? 红外与拉曼光谱

? 分子的热化学性质

? 键能与化学反应能

? 化学反应途径

? 分子轨道的能量与性质

? 原子电荷分布(电子布居分析)和自旋密度分布

? 分子的多极矩(永久偶极矩和四极至十六极矩)

? NMR 屏蔽常数、化学位移及分子的磁化率

? 振动园二色强度(Vibrational circular dichroism intensities)

? 电子亲和性与电离势

? 极化率与超极化率

? 静电势与电子密度分布

GaussView介绍

GaussView 3.0 让Gaussian 03 的使用变得十分简单而直接:利用高级的 3D 结构建构工具描绘分子,或从标准格式档案读入。从图形接口建立并送出 Gaussian 03 计算工作,并实时监控计算过程。以最新进的图形显示功能检视计算结果:显示分子轨域和其它性质的表面,光谱,振动型式动画,几何优选过程和反应路径。

GaussView 支持 Gaussian 03 所有功能,利用图表工具产生计算工作的关键词和选项参数、分子系统设定,以及其它高阶计算类型所需的输入数据。利用 GaussView 可以很容易的设定 ONIOM 各层原子的定义、周期系统计算工作的单位格子、 CASSCF 主动空间设定、使用STQN方法作过渡状态结构几何优选计算时的分子结构定义,等等。

外部链接

Gaussian公司主页 http://www.gaussian.com

许多优秀科学家,甚至包括[[约翰·波普]]和其他许多参与过Gaussian开发的科学家,均被Gaussian, Inc.公司列入黑名单,禁止他们接触和使用Gaussian软件。Gaussian, Inc.认为黑名单上的学者正在为其竞争对手编写软件,为了维护公司的利益,必须防止这些科学家接触到Gaussian的代码。此外,Gaussian的开发人员指出,黑名单上的学者将其开发的算法公布,使之进入公共领域,可以被其他人自由使用。

⑶ 基础知识

1.晶体测量的理论依据和测量方法

晶体在生长过程中,往往由于外界客观环境的影响,造成形态上不同程度的畸变,从而形成歪晶。但是,无论晶体形态上如何变化,同种晶体对应晶面间的夹角恒等不变。这便是晶体的面角守恒定律,是进行晶体测量的理论依据。

测量晶体时用接触测角仪测量石英晶体的面角(测角仪直臂与晶面贴紧,并使测角仪平面与所测二晶面的交棱方向垂直),每种面角测量三次,每次精度读到1/2°,取其平均数。

注意:所测数据是否符合面角守恒定律?

2.用吴氏网作晶面的赤平投影

(1)作投影的准备工作

将一张透明纸蒙在吴氏网上,用图钉将二者固定在一起,透明纸能够相对于吴氏网旋转。用铅笔在透明纸上描出基圆,用符号“+”标出网中心,并选择横直径作为零度子午面,在横直径右端与基圆相交处画一箭头,注明φ=0°,如图1-1所示。

图1-1 吴氏网和基圆的投影

(2)作直立晶面的极射赤平投影

直立晶面的投影点应落在基圆上。投影时首先令某一个面投影于φ=0°处,以符号圆点表示,旁边标上B。与B顺时针方向相临直立晶面G,可沿着基圆顺时针方向量B∧G的面角,得到G的投影点(图1-2)。

图1-2 直立晶面的极射赤平投影

(3)作倾斜晶面的极射赤平投影

作倾斜晶面(A)的极射赤平投影,可利用已知的与其方位角相同的直立晶面的投影点。将吴氏网中心点与B作连线,该直线即为网的横直径(零度子午面),利用横直径上的刻度B沿横直径向中心量出A∧B的面角,即得A的极射赤平投影点,以符号“•”表示(图1-3)。若C与D不在横直径(零度子午面)上时(图1-4),将吴氏网中心点与D作连线,转动透明纸使联线与横直径重合,自D点向中心量出C∧D的面角,便获得C投影点(图1-5)。

图1-3 倾斜晶面的极射赤平投影A

图1-4 倾斜晶面的极射赤平投影B

图1-5 倾斜晶面的极射赤平投影C

3.晶面空间分布位置的球面坐标和晶面间夹角度量方法

(1)用球面坐标即方位角(φ)和极距角(ρ)表示晶面投影点的位置

在投影图上求D晶面投影点的球面坐标,其方法如下:将中心点与D连线延长与基圆相交,由φ=0°处起顺时针方向量至交点的度数,就是D的方位角φ(图1-6)。再将透明纸转动使中心点与D的连线与吴氏网横直径重合,由中心点至D间的角度就是D的极距角ρ(图1-7)。

(2)求面角

求图1-8中E和F的面角:转动透明纸(中心不能动),使E和F落于吴氏网的一个大圆弧上,在大圆弧上借助网的大圆弧刻度量得E和F点之间的度数,即为它们的面角,如图1-8(b)所示。

图1-6 晶面空间分布位置的方位角度量方法

图1-7 晶面空间分布位置的极距角度量方法

图1-8 面角度量方法

⑷ 化学知识:晶体的类型及具体分类

晶体类型是晶体的分类依据之一 分为:离子晶体,原子晶体,分子晶体,金属晶体。
1.离子晶体:一般由活泼金属和活泼非金属元素组成,大多的盐(除ALCL3外,它是分子晶体), 强碱, (碱)金属氧化物。
特例:NH4CL(氯化铵)是有非金属组成的离子晶体,你看是铵根,有金字旁,所以把铵根看做是金属根(也许这样说不是很准确,大概就是这个意思)。
2.原子晶体:高中阶段记住有单质硅,碳化硅,金刚石,石英。最好要晓得B硼,会在元素的对角线法则里出题,你知道一下就行了。
3.分子晶体:由共价键组成,非金属或不活泼(非)金属形成(HCL,ALCL3)。主要包括 气态氢化物 ,含氧酸 ,非金属氧化物。 有三种键:非极性共价键(同种原子),极性共价键(不同种原子),配位键(提供电子对,要知道NH4-)
4.金属晶体 :金属单质。由金属阳离子与自由移动的电子组成。
晶体有三个特征:(1)晶体有一定的几何外形;(2)晶体有固定的熔点;(3)晶体有各向异性的特点。

⑸ 求助水热法制备晶体的知识

水热法是以水为抄溶剂,通过加入其他助溶剂提高溶解度,进行溶液法晶体生长的方法。痛如矿化剂溶解高熔点氧化物,高温高压条件提高溶解度,控制生长。通过强对流实现晶体生长过程。过饱和溶液在生长区内冷凝,并贡献出其中的溶质而实现晶体生长

⑹ 晶体工程师需要什么知识啊

1、晶体工程师用网友“peng_siemens”的话说,crystal engineering更帖切一点。主要在压电石英晶体领域做产品研发,生产技术服务等。

2、这个领域入门很容易,因此一般的生产技术服务方面,只要有一定的经验,没有太高文化知识也能做。但深层次的技术研发,没有高深的理论基础及高水平的计算能力(工科领域对数学要求都很高)根本是寸步难行。

3、目前的国际环境,国内大多数行业都不是很好,压电晶体行业也一样。中国是世界工厂,汇率上涨,出口价格增加,是目前晶体行业的主要困难。但各个行业都一样,高端市场永远象强者开放。无论你是技术,还是质量能够进入高端领域,都一定是个有钱图的产品。

4、本科电子专业毕业,这的确有些笼统。要说明的是,晶体行业属于微电子专业一类的。如山东大学物理与微电子、电子科技大学微电子学、西安电子科技大学微电子学

⑺ 晶体的相关知识

什么是晶体呢?
虽然你还不知道它的定义,但是你早已经和它的家族成员见过面了。不仅如此,你还吃过、用过它们呢!你瞧,自然界里的冰、雪,组成大地的土壤,各种金属材料(如金、银、铜、铁、锡、铝),以至我们所吃的糖、盐和所用的各种装饰品(如红宝石、蓝宝石、钻石)等等,全都是晶体。所以,毫不夸张地说,我们的世界是一个绚丽多彩的晶体的世界。

那么,到底什么是晶体呢?为什么这么多种看上去截然不同的东西都属于晶体呢?大家知道,物质是由原子、分子或离子组成的。当这些微观粒子在三维空间按一定的规则进行排列,形成空间点阵结构时,就形成了晶体。因此,具有空间点阵结构的固体就叫晶体。事实上,绝大多数固体都是晶体。不过,它们又有单晶体和多晶体之分。所谓单晶体,就是由同一空间点阵结构贯穿晶体而成的;而多晶体却没有这种能贯穿整个晶体的结构,它是由许多单晶体以随机的取向结合起来的。例如,飞落到地球上的陨石就是多晶体,其主要成份是由长石等矿物晶体组成的。而食盐的主要成份氯化钠(NaCl)却是一种常见的单晶体,它是由钠离子(Na+)和氯离子(Cl-)按一定规则排列的立方体所组成,从大范围(即整个晶体)来看,这种排列始终是有规则的。因此,我们平常所看到的食盐颗粒都是小立方体。又如钻石,它是由碳原子在大范围内按一定的规则排列而成的晶体,人们常常在它的外表面加工出许多小面,使它变成多面体,由于它具有很高的折射率,又是透明的,所以,在阳光照射下,它对光线产生强烈的反射和折射,发出闪烁的光辉。值得注意的是,在晶体中,这样晶莹透明的有很多,但是,并不是所有透明的固体都是晶体,如玻璃就不是晶体。为什么呢?这是因为,组成玻璃的微观粒子只是在一个很小的范围内作有规则的排列,而从大范围来看,它们的排列是不规则的,因此,玻璃不是晶体。

自然界中形成的晶体叫天然晶体,而人们利用各种方法生长出来的晶体则叫人工晶体。目前,人们不仅能生长出自然界中已有的晶体,还能制造出许多自然界中没有的晶体。人们发现,晶体的颜色五彩纷呈,从红、橙、黄、绿、蓝、靛、紫到各种混合颜色,简直应有尽有,令人目不暇接。不过,更加令人惊奇的是,晶体不仅美丽,还有许多重要的用途呢!

比如说激光晶体。这是一种非常重要的晶体,它吸收足够的能量之后能发出一种特殊的强光,我们叫它"激光",所以这种晶体叫做激光晶体。目前,人们已研制出数百种激光晶体。其中,红宝石晶体是最引人注目的一种。这是因为,有一位美国科学家Maiman,曾在1960年利用这种晶体获得了一项举世瞩目的重大科学成就--研制出世界上第一台激光器。今天,这些激光晶体在军事技术、宇宙探索、医学、化学等众多领域内都已得到了广泛的应用。例如,激光电视、激光彩色立体电影、激光雷达、激光手术刀等都是激光晶体在这些领域内成功应用的结果。又如水中通信,由于海水对红光产生强烈的吸收,而对蓝绿光则吸收得较少,因此,蓝绿光在海水中能够传播较远的距离。利用这一特性,人们就可以利用激光晶体产生的蓝绿光进行水中通信和探索。

另一种重要的晶体恐怕要属半导体晶体了。这是因为,由半导体晶体硅和锗做成的各种晶体管,取代了原来的电子管,在无线电子工业上有着极其广泛的应用,由于它们的出现,电子产品的体积大大减少,成本大幅度降低。可以说,没有半导体晶体,就没有无线电子工业的飞速发展,我们今天就不可能拥有随身听、超薄电视和笔记本电脑等体积小巧、携带方便的电子产品了。此外,光纤通讯技术也离不开半导体晶体。利用这种晶体做光源,人们就能在一根头发丝般的光导纤维中传递几十万路电话或几千路电视,从而大大提高了信息传递的数量和质量。试想,如果没有这些半导体晶体,我们怎能看到高清晰度的电视,又怎能清楚地听到从遥远的大洋彼岸传来的亲人的声音呢?

不过,在众多性能之中,最奇妙的当属光折变效应了。具有这种效应的晶体叫光折变晶体。那么,这是怎样一种效应呢?原来,当外界微弱的光照到这种晶体上时,晶体的折射率会发生变化,形成极为特殊的折射率光栅。凭借这种光栅,晶体便成为神通广大的"齐天大圣",向人们演示出种种不可思议的奇妙现象:它可以在3cm3的体积中存储5000幅不同的图像,并可以迅速显示其中任意一幅;它可以把微弱的图像亮度增强1000倍;它可以精密地探测出小得只有10-7米的距离改变;它可以使畸变得无法辨认的图像清晰如初;它可以滤去静止不变的图像,专门跟踪刚发生的图像改变;它还可以模拟人脑的联想思维能力!因此,这种奇妙的晶体一经发现,便引起了人们的极大兴趣。目前,它已发展成一种新颖的功能晶体,向人们展示着良好的应用前景。

此外,还有许多晶体,如电光晶体、声光晶体、压电晶体、热释电晶体、磁性晶体、超硬晶体等,它们在不同的技术领域中也起着重要的作用,在此就不一一列举了。不过,值得一提的是,近年来,随着光子晶体和纳米晶体的出现和发展,掀起了微观晶体的研究热潮,使人类认识达到了一个新的层次。可以相信,不久的将来我们将拥有更多、更奇妙的晶体。 请【采纳】谢谢

⑻ 化学晶体结构知识点

===
化学晶体结构知识点

==
您的问题太专业了。我不是很懂,等等吧。

⑼ 材料化学晶体学知识求助!7大晶系的特征,宏观对称性和微观对称性的分类,解释P4mm空间群的含义

七大晶系,14种布拉伐格子等相关内容是固定的,你在固体物理,晶体结构学,以及材料科学基础里面都可以找到,都是用表格列出来的,或者你直接在网络一搜,就出来相应的内容,由于内容太多,我就不给你列了。
宏观对称性及微观对称性就是划分七大晶系,14种布拉伐格子的依据,这个在刚才提的教材里面就有,或者群论里面也有更详细的介绍。
P4mm属于C4v点群,有C4轴和4个平行于X4轴的对称平面。

阅读全文

与晶体的常识相关的资料

热点内容
小学语文长城课程导学 浏览:795
公办和教办 浏览:69
上海高职院校公办 浏览:949
廉江市第九小学校长 浏览:264
1984年小学5年级几门课程 浏览:536
中小学生物考试总分 浏览:582
运城小学入学难吗 浏览:245
中小学劳技活动制度 浏览:328
大祥区公办幼儿园 浏览:909
2019宁波中小学生招生 浏览:887
小学六年级语文教材教法分析 浏览:500
学习小升初 浏览:523
苏教版一年级语文下知识点讲解 浏览:65
小升初美术试题及答案 浏览:513
苏教版二年级数学上第七单元教材分析 浏览:244
小升初语文附加题 浏览:93
育才中学公办 浏览:616
小学书法公开课教案 浏览:751
陪伴中考作文开头结尾 浏览:87
教师节金 浏览:347