导航:首页 > 小学年级 > 数学书五年级答案

数学书五年级答案

发布时间:2021-03-07 03:19:12

❶ 小学五年级上册数学书参考答案

是这两题吗?
用所花地时间处以跑的距离,求出来就是跑1千米需要的回时间。
(9.7+2)÷1.5=7.8(分钟答)
李大伯跑1千米平均需要7.8分钟。
小数点往右点了一位,也就是把小数扩大了10倍,所以只要把24.6除以10,就是原来的商。
最后被除数除以商就等于除数。
24.6÷10=2.46
3.69÷2.46=1.5
除数是1.5

❷ 五年级的数学书练习答案

哪单元

❸ 2017年五年级下册数学书答案《完整版》

第一题:

(3)数学书五年级答案扩展阅读

这部分内容主要考察的是倍数的知识点:

一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。

一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。

一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

❹ 小学五年级数学课本答案

通过四年多的数学学习,学生已经掌握了大量的整数知识(包括整数的认识、整数四则运算),本单元让学生在前面所学的整数知识基础上,进一步探索整数的性质。本单元涉及到的因数、倍数、质数、合数以及第四单元中的最大公因数、最小公倍数都属于初等数论的基本内容。数论是一个历史悠久的数学分支,它是研究整数的性质的一门学问,以严格、简洁、抽象著称。数学一直被认为是“科学的皇后”,而数论则更被誉为“数学的皇后”,可见数论在数学中的地位。本单元的知识作为数论知识的初步,一直是小学数学教材中的重要内容。通过这部分内容的学习,可以使学生获得一些有关整数的知识,另一方面,有助于发展他们的抽象思维。

在数论中,数的整除性理论又是最为基本的理论,本单元的所有概念都是建立在数的整除性的基础之上。对于任意整数a、b,都存在整数n、r,使b=na+r(其中r<a),当r=0时,我们就说b能被a整除(或a能整除b),此时,b=na。其他的一些概念,如因数、倍数等,都是以此为基础的。

在以往的数学教材中,也一直把“数的整除”概念编排在这一单元的起始位置,再把因数(以往的教材中称为约数),倍数,2、5、3的倍数的特征(以往的教材称为能被2、5、3整除的数的特征),质数,合数,分解质因数,最大公因数(以往的教材中称为最大公约数),最小公倍数等内容共同编排在后面,合为一个单元。这样编排,虽然突显了以上这些概念的紧密逻辑关系,但也形成了同一单元内概念多而集中、抽象程度过高的现象,学生在学习时经常出现概念混淆、理解困难的问题。因此,与以往教材相比,本套实验教材在编写时,对这部分内容进行了以下几方面的调整。

1. 我们在本单元研究的都是整除现象,因此,可以说整除概念是贯穿这部分教材的一条主线。但“整除”这一词汇是否必须出现呢?让学生大量叙述“×能被×整除”“×能整除×”是否必要?签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。

2. 在以往的教材中,由于求最大公因数、最小公倍数时,采用的方法是唯一的、固定的,也就是用短除法分解质因数的方法。因此,作为求最大公因数、最小公倍数的必要基础,“分解质因数”一直作为必学内容编排。而在本册教材中,由于允许学生采用多样的方法求最大公因数和最小公倍数,分解质因数也失去了其不可或缺的作用,同时,也是为了减少这一单元的理论概念,教材不再把它作为正式教学内容,而是作为一个补充知识,安排在“你知道吗?”中进行介绍。

3. 公因数、最大公因数和公倍数、最小公倍数概念的建立是以因数、倍数的概念为基础的,也是为后面学习约分(需要尽快找出分子、分母的公因数)、通分(需要尽快找出两个分数分母的公倍数)做准备的,在整个知识链中起着承上启下的作用。这两个内容可以集中编排在本单元,也可以分散编排在约分、通分的前面。考虑到本单元概念较多,抽象程度高,本套教材把这两部分内容分散编排在第四单元,也更加突出了它们的应用性。

教学建议

1. 由于这部分内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在过去的教学中,一些教师往往忽视概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度。再加上有些教师在考核时使用一些偏题、难题,导致学生在学习这部分知识时觉得枯燥乏味,体会不到初等数论的抽象性、严密性和逻辑性,感受不到数学的魅力。为了克服以上教学中出现的问题,应注意以下两点。

(1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的公因数、公倍数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。

(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,如质数、合数等概念,很难从生活实际中引入。而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。

2. 这部分内容可以用6课时进行教学。

32

❺ 五年级数学书全部答案

名师解教材上有

❻ 小学五年级上册数学书答案

是这抄两题吗?
用所花地时间处以跑的袭距离,求出来就是跑1千米需要的时间。
(9.7+2)÷1.5=7.8(分钟)
李大伯跑1千米平均需要7.8分钟。
小数点往右点了一位,也就是把小数扩大了10倍,所以只要把24.6除以10,就是原来的商。
最后被除数除以商就等于除数。
24.6÷10=2.46
3.69÷2.46=1.5
除数是1.5
向左转|向右转

❼ 5年级上数学书答案

五年级第13周数学思维拓展题参考答案
(水平有限,有不对之处,还请谅解和指正)

1)某商店规定一种商品一次购买不超过10件,每件5元;超过10

件,超过部分每件3元。如果甲比乙多付19元,那么甲乙各买了几件?

思考过程:

假设甲、乙购买的件数都不超过10件,那么甲比乙多付的钱一定是5的倍数,即5元、10元、15元、20元等,总之不会是19元。

假设甲、乙购买的件数都超过10件,那么甲比乙多付的钱一定是3的倍数,即3元、6元、9元、12元、15元、18元、21元等,总之也不会是19元。

所以一定是甲购买的件数超过10件,乙购买的件数不超过10件。那么甲花的钱一定超过50元,又根据“甲比乙多付19元”可以得出乙花的钱也一定超过31元,因此乙购买的件数只能是7件、8件、9件或10件。

假设乙购买7件,那么花35元,因此甲花54元,又根据甲购买的未超过10件的部分需花50元,得出甲超过10件部分花4元,显然与“超过部分每件3元”矛盾。

假设乙购买8件,那么花40元,因此甲花59元,又根据甲购买的未超过10件的部分需花50元,得出甲超过10件部分花9元,与“超过部分每件3元”不矛盾。

假设乙购买9件,那么花45元,因此甲花64元,又根据甲购买的未超过10件的部分需花50元,得出甲超过10件部分花14元,显然又与“超过部分每件3元”矛盾。

假设乙购买10件,那么花50元,因此甲花69元,又根据甲购买的未超过10件的部分需花50元,得出甲超过10件部分花19元,显然还是与“超过部分每件3元”矛盾。

所以,乙购买的件数一定是8件,那么甲购买的件数就是13件。

2) 第一次买了3个足球和8个篮球共值500元,第二次买了4个足球和5个篮球共值525元,求一个足球和篮球各多少元?

思考过程:

显然,1个足球比3个篮球贵25元,那么3个足球比9个篮球贵75元。

假设第一次买的9是篮球和8个篮球,那么只需要花425元,可以求出1个篮球25元。显然1个足球100元。

所以,1个篮球25元,1个足球100元。

3)称珠子

有9颗外形一模一样的珠子,其中有一颗稍重一点。用一架没有砝码的天平,至少称几次才能找出这颗珠子来?

思考过程:

先把9颗珠子分成3堆,任取其中2堆,分别放在天平两边。

假如天平平衡,那所求珠子必在另外1堆里;假如天平不平衡,则那所求珠子必在天平下倾那边。

再从有所求珠子的那堆里,任取2颗,分别放在天平两边。

假如天平平衡,那么所求珠子就一定是未放在天平上的那颗;假如天平不平衡,那么所求珠子就是天平下倾那边的那颗。

所以,至少要称2次,才能找出这颗珠子来。

爸爸的岁数是明明岁数的7倍,爸爸比明明大30岁,问爸爸多少岁?明明多少岁?

设小明为x岁,爸爸为y岁
{y-x=30
y/x=7
解的{x=5
y=30
答:小明5岁,爸爸30岁。

1、商店有彩色电视机210台,比黑白电视机的3倍还多21台.商店有黑白电视机多少台?

2、用一根长12.4分米的铁丝围成一个等腰梯形,已知这个梯形的两腰共长6.4分米,面积是9平方分米,这个梯形的高是多少分米?(用方程解答)

3、河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍.又知鸭比鹅多27只,鹅和鸭各多少只?

4、一个林场要栽树2000棵,前3天平均每天栽350棵.其余的要求2天栽完,平均每天要栽多少棵?

5、甲、乙两城相距480千米,一辆汽车从甲地到一地,每小时行驶60千米,返回时,每小时行驶40千米,求这辆汽车往返的平均速度是多少?

6、修路队修一段路,前8天平均每天修路150米,余下3000米又用4天修完。这个修路队平均每天修路多少米?

7、一列火车4小时行了272千米,照这样计算,①、行驶2312千米路程需多少小时?②、这列火车15小时行驶了多少千米?(用两种方法解答)

8、服装厂原来做一套衣服用布2.5米。采用新的裁剪方法后,每套衣服节省0.5米,原来做60套衣服的布现在可以多做多少套?

9、工程队修一条长54千米的公路,前7天修了6.3千米,照这样的速度,余下的还要多少天完成?

10、A、B两地相距480千米,甲、乙两车同时从A、B两地出发相向而行,经过6小时相遇,甲车每小时行45千米,乙车每小时行多少千米?

11、五年级两个班的学生采集树种,一班45人,每人采集0.13千克。二班共采集6.15千克。两班一共采集多少千克?

12、一间教室要用方砖铺地。用面积是0.16平方米的方砖需要270块,如果改用边长是0.3米的方砖,需要多少块?

13工程队要全修一条长4.8千米长的水渠,计划用15天完成。实际每天比原计划多修0.08千米,实际多少天就完成了任务?

14、六年级两个班的学生采集树种,一班45人,每人采集了0.13千克,二班36人共采集6.15千克,两个班一共采集树种多少千克?

15、4只大熊猫两周共吃掉竹叶169.12千克,平均每只大熊猫每天吃多少千克竹叶?

16、服装厂做校服,现在每套用布2米,比原来每套节省用布0.2米,现在做880套校服的布料原来只能做多少套?

17、一桶连桶共重9.2千克,倒去一半后,连桶还重5.6千克,问桶重多少千克?

18、小明的新房间准备用方砖铺地。如果用面积是0.09平方米的方砖需要160块,如果改用边长0.4分米的方砖,需要多少块?

19、某钢厂全年计划产钢54000吨,结果提前两个月完成任务,实际每月比计划每月多生产多少吨?

20、学校买来4张办公桌和9把椅子共用891元。已知1张办公桌和6把椅子的价钱相同,每把椅子,每张办公桌各多少元?

21、甲乙两城相距280千米,两辆汽车同时从两城相对开出,3.5小时两车相遇,已知其中一辆汽车每小时行38千米,另一辆汽车每小时行多少千米?

22、李师傅五月份计划10天做1800个零件,实际每天比计划多做15个,李师

23、一条水渠,原计划每天修0.45千米,30天完成,实际每天的工作效率是原计划的1.2倍。完成这项任务,实际需要多少天?

24、一个农具厂要生产2500件小农具,前5天每天生产180件,余下的要在8天内完成,每天应生产多少件农具?

25、学校食堂运回面粉26袋,每袋20千克,运回大米的重量比面粉重量的2倍少80千克。运回大米多少千克?

26、某工地需要47吨沙子,用一辆载重4.5吨的汽车运了6次,余下的改用一辆载重2.5吨的汽车运,还要运多少次?

27、一个梯形果园,它的下底是240米,上底是180米,高是60米。如果每棵果树占地9平方米,这个果园共有果树多少棵?

28、一列客车和一列货车同时从甲乙两城相对开出,4小时相遇,已知客车每小时行90千米,是货车速度的1.5倍。甲乙两城之间的路程是多少千米?

29、甲乙两列火车从相距1085千米的两地相对开出,经过3.5小时后两车相遇。甲车每小时行118千米,乙车每小时行多少千米?

30.制体厂一车间装订一批练习本,如果每小时装订600本,8小时可以完成任务。如果每小时装订800本,可以提前几小时完成任务?

31.晶晶看一本129页的故事书,已经看了7天,每天看12页,剩下的每天看15页,再用几天可以看完?

32、两桶油,甲桶油的重量是乙桶油的1.8倍。如果从甲桶中取出1.2千克,两桶油的重量就相等了。两桶油原来各有多少千克?

33.一块广告牌是三角形,底是12.5米,高6.4米。如果要给广告牌刷漆(只刷一面)每平方米用油漆0.4千克,刷这个广告牌需要油漆多少千克?

34、一年级在学校吃午饭的同学有145人,比二年级在学校吃午饭的人数的2倍还多19人。二年级有多少同学在学校吃午饭?

35、地球绕太阳一周约用365天,比水星绕太阳一周所用时间的4倍多13天。水星绕太阳一周约用多少天?

36、甲、乙两人加工同一种机器零件,甲加工了280个,比乙5天加工零件的个数少40个。乙平均每天加工多少个?

37、体育组买了4个足球和20根跳绳,共用去238.4元,已知跳绳每根2.8元。足球每个多少元?

38、天津到济南的铁路长358千米。一列客车和一列货车同时从两地相向而行,2小时后在途中相遇,已知客车每小时行120千米。货车每小时行多少千米?

39、实验小学共有108人参加学校科技小组,其中男生人数是女生人数的1.4倍。参加科技小组的男、女生各有多少人?

40、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有多少人?

41、爱达乐蛋糕房制一种生日蛋糕,每个需要0.32千克面粉。王师傅领了5千克面粉做蛋糕,他最多可以做几个生日蛋糕?

42、水果店运来495千克苹果,用纸箱来装,如果每个纸箱装25千克,一共需要多少个纸箱?

❽ 小学五年级数学书答案

小学五年级数学书上册哪有第123、124、125页?一共才105页。

我就是五年级学生

❾ 小学五年级数学书上册答案

人教版还是什么版的

解:设每套x 本
(2.5+3)x=22
5.5x=22
x=4

解:下午要运x次
(x+3)×5=35
x+3=7
x=4

2

x=50

3次,15个

阅读全文

与数学书五年级答案相关的资料

热点内容
小学语文长城课程导学 浏览:795
公办和教办 浏览:69
上海高职院校公办 浏览:949
廉江市第九小学校长 浏览:264
1984年小学5年级几门课程 浏览:536
中小学生物考试总分 浏览:582
运城小学入学难吗 浏览:245
中小学劳技活动制度 浏览:328
大祥区公办幼儿园 浏览:909
2019宁波中小学生招生 浏览:887
小学六年级语文教材教法分析 浏览:500
学习小升初 浏览:523
苏教版一年级语文下知识点讲解 浏览:65
小升初美术试题及答案 浏览:513
苏教版二年级数学上第七单元教材分析 浏览:244
小升初语文附加题 浏览:93
育才中学公办 浏览:616
小学书法公开课教案 浏览:751
陪伴中考作文开头结尾 浏览:87
教师节金 浏览:347